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APPROXIMATE THERMODYNAMIC STATE RELATIONS

IN PARTIALLY IONIZED GAS MIXTURES

John D. Ramshaw
Lawrence Livermore National Laboratory
University of California
P. O. Box 808, L-097
Livermore, CA 94551

ABSTRACT

In practical applications, the thermodynamic state relations of partially ionized gas mix-
tures are usually approximated in terms of the state relations of the pure partially ionized con-
stituent gases or materials in isolation. Such approximations are ordinarily based on an artificial
partitioning or separation of the mixture into its constituent materials, with materegarded
as being confined by itself within a compartment or subvolume with volume fraafj@md pos-
sessing a fractio, of the total internal energy of the mixture. In a mixtureMinaterials, the
quantitiesay, and B, constitute an additionalN2— 2 independent variables. The most common
procedure for determining these variables, and hence the state relations for the mixture, is to re-
quire that the subvolumes all have the same temperature and pressure. This intuitively reasonable
procedure is easily shown to reproduce the correct thermal and caloric state equations for a mix-
ture of neutral (non-ionized) ideal gases. Here we wish to point out that (a) this procedure leads to
incorrectstate equations for a mixture of partially ionized ideal gases, whereas (b) the alternative
procedure of requiring that the subvolumes all have the same temperature and free electron density
reproduces the correct thermal and caloric state equations for such a mixture. These results readily
generalize to the case of partially degenerate and/or relativistic electrons, to a common approxima-
tion used to represent pressure ionization effects, and to two-temperature plasmas. This suggests
that equating the subvolume electron number densities or chemical potentials instead of pressures
is likely to provide a more accurate approximation even in nonideal plasma mixtures.



1. INTRODUCTION

Multicomponent hydrodynamics calculations require thermodynamic state relations for
material mixtures. Unfortunately, it is rarely feasible to construct accurate state relations for mul-
ticomponent atomic mixtures of interacting materials, and even less feasible to employ them in
practice. In lieu of this, it is necessary to approximate the state relations of the mixture in terms of
those of the pure materials of which it is composed. The question then arises of how to construct
the best or most accurate approximations of this type.

The only obvious way to proceed is to regard the mixture as being artificially partitioned or
separated into its constituent components or materials, with mateaghrded as being confined
by itself within a compartment or subvolume with volume fractigrand possessing a fractigi
of the total internal energy of the mixture, where of couggey, = ¥, B, = 1. Thus, in a mixture
of N materialsN — 1 of the variablesy, may be independently varied, and another 1 of the
variablesf,, for a total of 2N — 2 such variables. In most hydrodynamical situations, the natural
independent thermodynamic variables for the mixture are the partial mass depgitiad the
specific internal energy (energy per unit malssyvhich is not purely thermal but also includes
chemical/ionization energy. The values @f and| are therefore presumed known. The mass

density of pure materid within its subvolume is then given by

P = Pr/ % (1)

The internal energy density (energy per unit volume) of the mixtupd isvherep =y, p, is the
total mass density. According to the definition®f the internal energy of materiklper unit total
volume is then simply3,pl, so the internal energy density of matedkalithin its subvolume is
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Bp!/ o4 = ply, wherel, is the specific internal energy of materiallt follows that

Pl = Bep! (2)

and we note thay, p, I, = pl. Together with the known values pf andl, knowledge ofe, and
B, is therefore sufficient to determingg andl, , which are the natural independent thermodynamic
variables for materiak in isolation. The state relations for pure matekahre also presumed
known, sop, andl, then determine the remaining thermodynamic properties of makesath as
its pressurep,, temperaturd,, and so on.

Two problems now remain: (a) how to determigand f,, thereby determining,; T,,
etc., and (b) having done so, how to compute the thermodynamic properties of the mixture, such
as its pressur@ and temperaturé@, in terms of the thermodynamic properties of the individual
materialsk of which it is composed. In order to determine thé 2 2 variablese, and , it
IS necessary to imposeN2- 2 conditions. The most common, natural, and intuitive choice for
these conditions is to require that the subvolumes are in pressure and temperature equilibrium with
each other. Requiring all the subvolume pressye® be equal imposeN — 1 conditions, and
requiring all their temperaturéeg to be equal imposes anothiér— 1, so this provides thel2 — 2
conditions needed to determine the valuesypand f,, thereby solving problem (a). Moreover,
it is natural to identify the resulting common value of thewith the pressure of the mixture,
and that of thel| with the temperatur& of the mixture, thereby solving problem (b) as well. This
procedure seems intuitively reasonable, but of course it represents an uncontrolled approximation
in general. (The true state relations for a dense gas mixture depend on the form of the interaction

potential between atoms and ions of different materials, and this information does not enter into the



state relations of the pure materials.) However, it is easy to show, and appears to be well known,
that this procedure is actually exact for a mixture of neutral (non-ionized) ideal gases, and produces
precisely the correct thermal and caloric state equations for such a mixture (see Appendix). This
encourages the hope that the same procedure will also provide a reasonable approximation to the
state relations of non-ideal mixtures.

Unfortunately, the above procedure doed produce the correct state relations for a mix-
ture of partially ionized ideal gases, as will be shown in the next section. The physical reason
for this is simply that the electrons produced by the ionization of one material tend to suppress
the ionization of the others, andice versaand this effect is not accounted for in the procedure
described above. The purpose of this paper is to show that this problem may be removed simply by
equating the free electron densities of the subvolumes instead of their pressures. When this is done,
the procedure thus modified reproduces the correct state relations for a mixture of partially ionized
ideal gases. Moverover, this remedy is remarkably general; it applies to a mixture of an arbitrary
number of materials, even in the presence of multiple ionization and partially degenerate and/or
relativistic electrons. It also remains valid when used in conjunction with a common approxima-
tion for pressure ionization, as well as in two-temperature plasmas. Of course, this procedure, like
pressure equilibration, becomes an uncontrolled approximation for dense mixtures, in which the
atoms and ions of different materials interact with each other. However, the fact that it is at least
exact for ideal mixtures, in contrast to pressure equilibration, suggests that it is likely to provide a
better approximation in dense partially ionized gas mixtures.

In ideal systems, equilibrating subvolume temperatures and free electron number densities
is equivalent to equilibrating temperatures and electron chemical potentials. This equivalence no
longer obtains in dense systems, where one would intuitively expect that it is the chemical poten-
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tials that should be equilibrated, since differences between them are the general thermodynamic
driving forces associated with mass exchange between subsystems, and in the present context the
artificial partitions separating the subvolumes may be thought of as semipermeable membranes
through which free electrons may pass but heavy particles may not. The equilibration of elec-
tron number density, or chemical potential, instead of pressure has previously been proposed on
intuitive grounds, but we are unaware of a previous published justification for this procedure.

The present discussion is organized as follows. In Sect. 2 we consider mixtures of classical
partially ionized ideal gases, and show that the equilibrating subvolume pressures and temperatures
leads to incorrect mixture state relations, while equating subvolume temperatures and free electron
densities reproduces the correct state relations. In Sect. 3 these results are generalized to the case
of partially degenerate and/or relativistic electrons, and to a common approximation for pressure
ionization. The case of two-temperature plasmas, in which the electron tempdeadiffers from

the heavy particle temperature, is discussed in Sect. 4. Sect. 5 contains a few concluding remarks.

2. CLASSICAL IDEAL GASES

2.1 The True Mixture

We consider a classical ideal gas mixturdNadifferent types of atoms denoted by the sym-
bols X (k=1,2,...,N), the various ionization states of which are denoted pyn%=0,1,2,...,N,),
so that X refers to neutral atoms of Xwhile XJ for n > 1 refers ton-tuply ionized X; i.e., X
=X, X2 = X/ T, etc. The free electrons will simply be denoted by the syn&avhich will
also be used as a sub- or superscript as convenient. The mass of a single partjde d@énoted

by m, and clearlym! = m? — nm,, wheren{) is the mass of a single neutral atom d}f Zndme
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is the mass of a single electron. The partial mass density, of Xhe mixture is denoted by,,
which is presumed to be a known given quantity and is of course is unchanged by ionization. The
partial number density of Xin the absence of ionization would then bg= pk/mﬁ, which is
therefore also a known quantity. The partial mass densityyaghXhe ionized mixture is denoted
by p = mni, wheren is the corresponding partial number density. Similarly, the partial mass
density of free electrons in the mixture pg = megne, Whereng is the partial number density of
free electrons in the mixture. Since the particle masses are known, the partial mass and number
densities carry equivalent information, but it will usually be more convenient to work in terms of
the latter.

Since the total number density of heavy particles of each material is unchanged by ioniza-

tion, the number densitieg, are constrained by the equations

> ="y 3)

n

In addition, conservation of electrons implies the condition

anﬂ =ne 4)

The specific internal energy (energy per unit massf the mixture is also presumed known, and

is related to the specific internal energies of the individual species by

;nﬂnEIQ(T)+%nele(T) =pl (5)

wherep = 3, p, is the total mass density of the mixtufejs the temperature, anfl(T) andle(T)
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are the caloric equations of state for the heavy particles and electrons, respectively, including their
heats of formation, or in the present context ionization energies. We assume that the mixture is in
ionization equilibrium, which implies that the number densities are further constraindgd®sha

equations of the form [1]

nn+1n
k € n .
K _F_KNT) (L<K<N;0<n<N,—1) 6)

k

whereNs = 5, N, and the quantitie&?(T) are equilibrium constants which are known functions
of T [1].

Equations (3)—(6) constituté+ 1+ 1-+Ns= Ns+ N+ 2 equations in the unknown variables
ng, Ne, and T. There areN, variablesny, whereN, = 5, (N, +1) = Ns+ N, so there are\, +
2 =Ns+ N+ 2 unknowns. The system of Eqgs. (3)—(6) is therefore closed and the solution is
determinate. Once these equations have been solved akihown, the pressure of the mixture

is then given by the thermal equation of state for an ideal gas mixture, namely

p= Z Mk T + Nekg T = Z NKgT +NekgT (7
n

wherekg is Boltzmann’s constant. Equations (3)—(7) therefore implicitly determine both the pres-

surep and temperatur€ of the mixture as a function of the variablgs, 1).

2.2 The Partioned Mixture
We now suppose that the mixture is artificially partitioned into subvolumes as described in

the Introduction. According to Egs. (1) and (2), the density of materjakithin its subvolume is



thenp, = p, /oy, while its specific internal energy Is = B,pl/p,. In the absence of ionization,
the number density of materikiwithin its subvolume would then bg, = 5, /m? = p, /(a,,m0) =
n,/oq. The number density of Xwithin materialk is denoted byn, and the number density of
free electrons within materid is denoted byny. The total number density of heavy particles of
materialk is again unchanged by ionization, so the number densifider‘each materiak are

constrained by the equation

n

while conservation of electrons for materiadimplies the additional condition
3 nfig = fig 9)
n

The specific internal energy of materialithin its subvolume is related to the specific internal

energies of its individual species by

Z ”ﬂﬁﬂlﬁ(Tk) + meﬁE'e(Tk) = Pl = B! /o = Bep! / oy (10)

n

The assumption of ionization equilibrium further implies that the number densities within material

k are constrained by thd, Saha equations

ﬁn—i-lﬁe

Kk
kﬁE =K)NT,) (0<n<N, 1) (11)

The number densities; "and riy within materialk are particle numbers per unit volume

of materialk. In order to facilitate comparison with the true mixture relations, it is convenient to



eliminate these number densities in favor of the corresponding partial number densities (particle

numbers per unit total volumey, = o, i andng = o, fig. Equations (8)—(11) then become

Y= 0y (12)
n
Yy o= g (13)
n
z”]l(nnEII?(Tk) + mengle(T) = Bp! (14)
n
n+1pe
KK = aKQ(T) (0<n<N.-1) (15)
nn k' Nk \ Tk = =%

k

If oy and B, were known, Egs. (12)—(15) would constitiNg+ 3 equations in thél, + 3
unknownsny, ng, andT, for each materiak, and the pressurp, Within materialk would then be

Py = " Mkg Ty + kg T = (N + N kg T, (16)
n

In order to determine the variableg and , for all k, we must impose an additionaN2- 2
conditions. Since the quantiti&g'(T) andl}(T) are in general nonlinear functions of if we are

to have any hope of reproducing the true solution for the mixture it is obvious that we must require
temperature equilibrium between the subvolumes;T,e= T, =T for k= 2,...,N. This provides

N — 1 conditions which we may regard as determining the varighjeEquations (14)—(16) then

become

> Mgle(T) + menyle(T) = Bypl 17)



n+1,,
M N

n
N

b = (N AnHkeT (19)

= oK(T) (0<n<N -1) (18)

The system of equations to be solved now consists of Egs. (12), (13), and (17)—(19) Kor all
The total number of these equationsNis-N + N +Ns-+ N = Ns+ 4N, and if theo, were known
the remaining unknown quantities would b ng, T, B, and g, the total number of which is
N, +N+1+4(N—1)+N =N, +3N = Ns+4N. The system is therefore determinate for givgn

Let us now see how close we are to achieving consistency with the corresponding relations
for the true mixture, namely Egs. (3)—(7). Equation (12) is already of the same form as Eq. (3),
while summing Eg. (13) ovekyields

gnrﬂ = e (20)

wherene = 5, ¢ is the total number density of free electrons; i.e., the free electrons produced by
ionization of all materials per unit total volume. Equation (20) is seen to be of the same form as
Eg. (4). Summing Eq. (17) ovérreproduces Eq. (5), and summing Eq. (19) okeeproduces

Eq. (7) provided that we lgt = 5, oy §,. Thus we already have consistency with Egs. (3)—(5) and

(7) even though they, still remain arbitrary, and the only remaining question is whether we can
determine them in such a way that the partitioned Saha equations (18) are consistent with the true
mixture Saha equations (6). Of course this does not require that the specified explicitly in

closed form; they can also be implicitly determined by imposing an additiral independent
conditions on the unknown variableg, n¢, T, oy, B, and/org,. Comparison of Egs. (6) and (18)

shows that these equations would indeed be consistent if these additierfatonditions can be
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shown to imply the relatione, = ni/ne, or

Ng = o4 Ne (21)

Let us see if equating the subvolume pressures produces the desired effect, since we know
that this works for mixtures of neutral non-ionized ideal gases (see Appendix). Thus mg-set ~

P, = pfork=2,...,N, whereupon Eq. (19) becomegp = (n,+ ng)kgT, so that

" — (N +np)kgT _ N+ ng (22)
k (3N +ne)kgT 3 ;nj+ne

Solving forng, we find

g = oyNe+ 05y Ny — 1y (23)
]

which differs from Eq. (21). Equating the subvolume pressures therefore results in an inconsistency
between the partitioned Saha equations (15) and the true mixture Saha equations (6), and this of
course destroys the desired consistency between the partitioned and true mixture equations as a
whole.

The observant reader will notice that Egs. (21) and (23) would no longer differ if it could
somehow be shown that, = n,/5;n; as well. This cannot in general be true, however, since
then, are known given quantities independentlofwhereas it is clear that?/ne will in general
depend strongly of via the equilibrium constants).

Fortunately, the inconsistency is easily remedied. Oy 1 of the relations (21) required
to achieve the desired consistency are independent, since their sukrederces to an identity.

The relations (21) themselves can therefore be imposed as the additional conditions required to
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determine they,, and when this is done Egs. (6) and (15) immediately and automatically become
consistent. Moreover, Eq. (21) is equivalentfo="ne, which simply states that the free electron
densities of all the different materials within their respective subvolumes are equal. Equating these
free electron densities instead of pressures thereby produces full consistency of the equations for
the partitioned mixture with those of the true mixture. Of course, the subvolume pregguveis ~

then no longer be equal, and the correct mixture pressure is then simply gives by, o, p, as
discussed above. Note that the quantipgs= «, p, play the role of partial pressures, since their

sum is the total pressugeof the mixture.

3. PARTIALLY DEGENERATE AND/OR RELATIVISTIC ELECTRONS

AND PRESSURE IONIZATION EFFECTS

The development of the preceding section was restricted to classical (Maxwell-Boltzmann)
statistics. In many applications, however, the electrons may be partially degenerate quantum-
mechanically, or relativistic, or both, and the development requires modifications. In particular,
the pressure and specific internal energy of the free electrons, as well as the ionization equilibrium
constants in the Saha equations, then no longer depemdatone but acquire a dependencerngn

as well [1]. Equation (5) for the true mixture is therefore replaced by

g MmNl (T) 4+ menele(T, ne) = pl (24)
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while Eq. (17) for the partitioned mixture is replaced by

> Ml (T) +menile(T, i/ o) = Bp! (25)

where the precise functional form BT, ne) is immaterial for present purposes.

In the same way, Eq. (6) for the true mixture is replaced by

k= = K{(T,ne) (26)

while Eq. (18) for the partitioned mixture is replaced by

nn+lnE
KX = o KQ(T, NG/ ) 27)

n
N

where the precise functional form &f(T,ne) is also immaterial for present purposes. The final

such modification is that Eq. (7) for the true mixture is replaced by
p= Z NKkgT + Pe(Ne, T) (28)
while Eq. (19) for the partitioned mixture is replaced by
0 By = ke T + o4 Pe(nE/ 4, T) (29)

and the precise functional form of the electron pressud(ee, T) is again immaterial.

Let us now see if the relations (21) still suffice to ensure the desired consistency between
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the true and partitioned mixture relations. Combining Egs. (21) and (25) and summing, over
we obtain precisely Eq. (24), while combining Egs. (21) and (27) reproduces Eq. (26). Finally,
combining Egs. (21) and (29) and summing okewe obtain precisely Eq. (28) provided that we
letp=73, oy B, as before. The relations (21) therefore still suffice to ensure the desired consistency,
and hence can still be employed as the additional conditions required to determigefdinehis
purpose.

A similar situation obtains with regard to a common approximation used to represent pres-
sure ionization effects [2], wherein those effects are modeled by introducing a further approximate
dependence on the free electron density into the ionization equilibrium conkantse func-
tional form of this dependence is again immaterial for present purposes; whatever it is, it may
simply be incorporated into the functiokg (T, ne), so that Egs. (26) and (27) continue to apply

and the consistency conditions (21) again remain unchanged.

4. TWO-TEMPERATURE PLASMAS

In many situations of interest, the temperatigeof the free electrons differs from the
temperatur@ of the heavy particles, and the development then requires still further modifications.
In this casel is determined by a separate evolution equation for the specific internal dp@fgy
the free electrons, which therefore becomes an additional known quantity in the description. In the
true mixture, we then have

le(Te,Ne) = 13 (30)

wherel? is the known given value df as determined by the electron energy equation. Equation
(24) for the total energy density in the true mixture, including that of the free electrons, then
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becomes

ZW”E'E(TH%%' e(Te,Ne) = gm{lnk )+ menel = pl (31)
n

In the artificially partitioned mixture, each material now has its own electron temperature
TS, and it becomes necessary to partition the electron energy density as well as the total internal en-
ergy density. For this purpose we introduce electron energy partitioning pararjgtmalogous
to the B, so that

nele(TE nE/ o) = Benel (32)

while Eqg. (25) for the partitioned mixture now becomes

2 MRIRIR(T) + Merile(Te e/ o) = 5 Mkl (T) + )+ Meneficle = Bp! (33)
n

The Saha equations in a two-temperature plasma remain controversial [3—13], but most of
the competing variants have in common the feature that the ionization equilibrium cori§fants
acquire a dependence ®gin addition to their dependences drandne. The Saha equations (26)
for the true mixture then become

nﬂﬂne

n
Ny

— }<|r2(-|-7 -I-e7 ne) (34)

while the corresponding equations (27) for the artificially partitioned mixture become

nting
= KT, T e/ o) (35)
k
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In a two-temperature plasma, Eq. (28) for the true mixture pressure is replaced by
p= Z NKeT + Pe(Ne, Te) (36)
while Eq. (29) for the subvolume pressures in the partitioned mixture becomes
o By, = nKgT + o Pe(ni/ o4, T) (37)

Guided by the preceding development, we may anticipate th#itsaould be determined
by requiring the electron temperatures of all materials to be equalf.e: TP =Tefork=2,...,N.

Equations (32) and (33) then become

Nile(Te, Nic/ ) = Bf%'g (38)

S mEMIR(T) + menefile = Bl (39)

while the Saha equations (35) become

n
N

and Eqg. (37) becomes

4 By = Nk T + 04 Pe(Ni/ 04, Te) (41)

We now check to see if the conditions (21) still suffice to ensure consistency between

Egs. (30) and (31) for the true mixture and Eqgs. (38) and (39) for the partitioned mixture. Com-
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bining Eq. (21) with Egs. (38) and (39), we obtain
aknele(Te, ne) — ﬁlsneleo (42)

while Eq. (39) remains unchanged. Summing Eqgs. (42) and (39) lowee obtain precisely
Egs. (30) and (31), so the desired consistency obtains for the energies.

The next step is to see if the conditions (21) also suffice to ensure consistency between
Eq. (34) for the true mixture and Eq. (40) for the partitioned mixture. Combining Egs. (21) and
(40), we obtain precisely Eq. (34), thereby confirming the desired consistency for the Saha equa-

tions. Finally, combining Eqg. (21) with Eg. (41) and summing dewre obtain

Z o Py = Z NKeT + Pe(Ne, Te) (43)

which agrees precisely with Eq. (36) provided that we agaip lety, o, p,. The conditions (21)

therefore again produce full consistency between the relations for the true and partitioned mixtures.

5. CONCLUSION

We have shown that equating the temperatures and free electron densities (or equivalently
chemical potentials) in the subvolumes of an artificially partitioned mixture of partially ionized
ideal gases reproduces the correct thermal and caloric state equations of the true mixture, even
when the electrons are partially degenerate and/or relativistic and/or their temperature differs from
that of the heavy particles. It should be noted, however, thaetitepyof the true mixture,
and hence the other thermodynamic potentials (free energies) defined in terms of it, differs from
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the sum of the subvolume entropies by an entropy of mixing, but this difference can readily be
evaluated and accounted for in ideal systems. The total entropy per unit volume of the true mixture
is given by

0= ; MR[Sn(T) — kg IN K] + Ge(Ne, Te) (44)

wheres) (T) is a function of T alone, andoe(ne, Te) is the entropy per unit volume of the free
electrons, which again may be partially degenerate and/or relativistic. The entropy of nmiaterial

per unit volume of materidt within the artificially partitioned mixture is similarly given by
Ge='S FIL(T) — kg In ) + oe(FE, Te) (45)
n

The total entropy per unit total volume of the artificially partitioned mixture is therefore given by

o' = Z 40} = ; MR[Sen(T) — kg In(ng/ o )] -+ Z o (i, Te) (46)

n

As already shown, equating the electron number densities of the subvolumes impligs=that ~

so that Eq. (46) becomes

o = ;nﬂ[sﬂn(T) — kg NN} +KgIn 04 ] + Ge(ne, Te)

in which the last term is the aforementioned entropy of mixing, which is seen to be simple in form
and easily evaluated. Equation (47) relates the entropy per unit volume of the true mixture to that

of the artificially partitioned mixture, thereby allowing the former to be calculated from the latter.
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Since the thermal and caloric state equations resulting from the present procedure are exact
for ideal systems, they aipso factothermodynamically consistent. In dense systems, it intuitively
seems preferable to equilibrate the electron chemical potentials rather than number densities, and
since the resulting state relations are no longer exact, thermodynamic consistency is no longer so
obvious. However, it may be argued that thermodynamic consistency should be preserved by virtue
of the fact that the artificially partitioned mixture, although admittedly different from the true mix-
ture, may nevertheless be regarded as a real albeit idealized physical system in which the partitions
separating the subvolumes are semipermeable membranes with pores so small that only the free
electrons, but not the heavy particles, may pass through them. As is well known, the chemical
potential of any species that can pass through such a membrane has the same value on both sides,
SO equating the electron chemical potentials is indeed the physically correct condition to impose
in this situation. This procedure should therefore produce the physically correct state relations
for the partitioned system, and if so those state relations shpsidfactobe thermodynamically

consistent as well, even though they are only an approximation to those of the true mixture.
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APPENDIX

Here we wish to show that equating the subvolume pressures and temperatures reproduces
the correct state relations for a mixture of neutral (non-ionized) ideal gases. The thermal and

caloric equations of state for such a mixture are given by

p = ankBT (A1)

pl = ZPkIK(T) (A2)

wherekg is Boltzmann’s constanty = p, /m, is the number density of materialm, is its atomic
mass, and, (T) is its specific internal energy, which is presumed known as a functidn Bfua-
tion (A2) implicitly determines the mixture temperatureas a function of the known independent
variablesp, andl. Substitution into Eq. (A1) then yields the mixture presspras a function of
the same variables.

Now suppose the mixture is artificially partitioned into subvolumes as described in the
Introduction. According to Egs. (1) and (2), the density of matériaithin its subvolume is then
P = P/ o4, While its specific internal energy is= B,pl/p,. Thus the number density of material
k within its subvolume iy, = p,/m, = n, /o, and the pressure and temperature of matérial

within its subvolume are therefore given by

. NkgT,
P = 7% (A3)
Plk(Ty) = Bep! (A4)

If the o, and B, were known, Egs. (A3) and (A4) would constitutsl 2quations in the I un-
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knownsp, andT,. In order to determiney,_andp, as well, we require an additionaN2- 2 equa-
tions, which we obtain by requiring the subvolumes to be in pressure and temperature equilibrium;
i.e., P, =P, =pandT, =T, =T fork=2,...,N. Equations (A3) and (A4) then become

op = nkgT (A5)

Bpl = pyly(T) (A6)

Summing these equations overwe obtain precisely Egs. (Al) and (A2). The variabfeand
T computed by artificially partitioning the system and equilibrating subvolume temperatures and
pressures are therefore identical to the correct pressure and temperature of the true unpartitioned
mixture.

It is noteworthy that the pressure equilibration, while intuitively appealing, is not actually
necessary. If we simply s@} =T, = T to determine the8, but leave the volume fractions,

arbitrary, Eqg. (A6) is unchanged while Eq. (A5) is replaced by

oy P, = n kg T (A7)

Summing Eq. (A6) ovek then yields Eq. (A2) as before, while summing Eq. (A7) oketelds

Eq. (Al) with preplaced byy, o, p,. The quantityp = 5, , p, in the partitioned system is there-

fore the same as the correct pressure of the mixture, regardless of the values,pffthas, even

when theq, are chosen arbitrarily and the subvolume presspgeseé unequal, the correct pres-
sure of the mixture may be obtained simply by computing the volume-weighted average of the

subvolume pressures.
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